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ABSTRACT 

This paper presents a method of predicting t h e  s t a t i c  pressure 

gradient of a saturated vapor flowing i n  a round, s t ra ight  tube wi th  an 

arbi t rary heat flux. 

I 

I 

I 

The method is  based upon a Lockhart-Martinelli type 

correlation using, however, experimental data f o r  condensing steam t o  

develop t h e  correlation parameters. The  pressure drop is calculated on 

an incremental basis and summed over the  condenser length. The r e su l t s  I 

of t h i s  method compare favorably wi th  enipirical measurements. 



CONDENSING PRESSLRE DROP BY IMPROVED IQCKHART4ARTINEI.LI CORRELATION 

by F. L. Robson and W. E. Hilding 

Mechanical Engineering Department , University of Connecticut 

S W Y  

The object o f t h e  work described below was t o  develop a method for 

predicting t h e  pressure loss of condensing flow. 

similar t o  t h a t  of Lockhart and Martinell i ,  a procedure w a s  developed 

which allowed the  successful prediction of incremental and overal l  

pressure drops. 

rather than two-phase, two-component flow. While t h e  f low rates were 

in the range from 40 lbm/hr t o  500 lbm/hr in  1/4 inch and 1/2 inch tubes, 

it can be concluded tha t  t he  results are applicable t o  other flow rates 

and pipe diameters so long as the  Reynolds number lies i n  t h e  range of 

the  tests, i.a., 50,000 t o  200,000. 

using a correlation 

This correlation is based upon actual  condensing f low 

Nomenclature 

A 

C 
P 

D 

f 

J 

K 

2 - m a - f t  

- specif ic  heat - BTU/lbm 

- tube diameter - it 
- Fanning f r i c t ion  factor  

2 - mass velocity - lbm/sec f t  

- gravi ta t ional  acceleration - 32.17 - f t  lbm/sec lbf  2 

- mechanical equivalent of heat - 778 f t  lbf/BTU 

- constant i n  Eq. 5 f r i c t ion  factor  equation - 0.046 turbulent - 
16 laminar 

L - tube length - f t  



Nomenclature (cont . ) 
2 P - pressure - l b f / f t  

n - number of increment 

(APIA Z)v 

( A  P/AZ)l 

(AP/AZ)tp - two-phase f r i c t i o n  pressure drop gradient - l b f / f t  / f t  

(A P/A Z)m 

- vapor phase pressure drop gradient - lbf / f t2/f t  

- l iquid phase pressure drop gradient - lbf / f t2/f t  

2 

2 - momentum pressure drop graaient - lbf / f t  /ft 

P/A ‘)T 

Q 

Re 

T 

V 

W 

X 

8 

- t o t a l  pressure drop gradient - lbf / f t2/f t  

- heat flux - BTU/sec f t  

- Reynolds number 

temperature - OR 
- velocity - Pt/sec 

- mas8 flow rate - lbm/sec 

- Lockhart-zf,artinelli parameter 

- length along condenser - 
P - density - lbm/ft3 

Cr 

A 

B 

- viscosity - lbm/sec f t  

- heat of vaporization - BTU/lbm 

- r a t i o  of pressure a t  point i n  tube t o  entrance pressure 

- Lockhart-Kartinelli two-phase correlation factor  % 
Subscripts : 

e - entrance condition vt - viscous l iquid - turbulent vapor 

1 - l iquid tt - turbulent l iqu id  - turbulent vapor 

v - vapor T - t o t a l  

Superscript : 

c - exponent of variation A with P 
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INTRODUCTION 

The projected use of nuclear-F.ankine cycle powerplants fo r  s-e 

applications has intensified t h e  interest  i n  compact, lightweight heat 

exchangers. The condenser, e i ther  o f t h e  s h e l l  and tube var ie ty  or a 

condensing-radiator, can represent a sizable percentage of powerplant 

weight. has shown tha t  

the condensing pressure drop is a major cr i ter ion for optimization. 

A defini te  need now exists for an accurate method of predicting two-phase 

pressure losses  i n  condensing flow. 

* 
Work done on condenser optimization ( l ) ,  (2) 

Far t ine l l i  e t  al (3),  Lockhart and Yhrtinell i  (4 ) ,  and Martinell i  

and Nelson ( 5 )  were among t he  first t o  propose a method applicable t o  

condensation i n  tubes. 

investigators have published so-called Lockhart-Martinelli type corre- 

l a t ions  fo r  pressure losses in two-phase systems. O f  these, the  paper 

of Baroczy and Sanders (6) proposes a method t o  be used for pressure 

drop predictions fo r  a direct-radiator condenser with a constant heat 

transfer rate. 

two-component (nitrogen-nercury) , two-phase correlations. 

(6) was applied t o  t h e  data from tests at the University of Connecticut 

(7), ( 8 )  but t he  results were not i n  good agreement with the  experiments. 

It was  then decided t o  modify the  approaches of (4) and (6) using data fo r  

condensing steam. 

experimental data. 

Since the  appearance of these papers many other 

Like the previous work, however, t h i s  method is based on 

The work i n  

The results of t h i s  analysis agree w e l l  with the  

* Numbers i n  parentheses designate References at  end of paper. 
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METHOD OF ANALYSIS 

The condensing system under consideration consists of a long, small 

The tubes ciiameter, s t ra ight  tube with an annular cooling water jacket. 

have inside diameters of 0.190 inches and 0.550 inches w i t h  condensing 

lengths varying from 4 t o  11 feet. 

t o  nearly 500 lbm/hr. 

The flow rates range from 40 lbm/hr 

No assumption i e  made as t o  the flow mechanism, i.e., annular, 

annular mist, fog, etc., although the  data used a re  f r o m t e s t s  run in t he  

annular and annular mist regions (9). The only assumptions are t h a t  t h e  

vapor phase can be considered saturated at a l l  times and t h a t  t h e  s t a t i c  

pressure is uniform a t  any cross section of the  tube. 

The papers of Baroczy and Sanders (6) and Lockhart and Martinell i  (4) 

present t he  basic theory of two-phase pressure drop. 

drop i n  a condensing system i s  postulated t o  consist of two different  

pressure changes: (PP), the momentum change and (OP) the f r i c t i o n  

change. 

(AP)tp a re  calculated on an incremental basis  and t h e  overall pressure 

loss is then 

The s t a t i c  pressure 

t P  
The t o t a l  i s  then the  algebraic sum of these. ( AP), and 

Eq. 1 

The f r i c t i o n  lo s s  (AP) is found by means of t h e  Lockhart- 
t P  

Martinell i  correlation. 

Lockhart-Martinelli parameter. 

drop of t h e  l iquid flowing alone i n  the  tube, t o  the pressure drop of the  

vapor flowing alone. 

A factor fl is found as a function of X, the  

This parameter is t h e  r a t i o  of the  pressure 
g 

Previous treatments have assumed t h a t  the vapor 

properties can be t rea ted  as constants, the values being taken, fo r  example, I 
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as those occurring at  the  average s t a t i c  pressure. 

is more than 20 percent o f t h e  initial pressure, this assumption can 

lead t o  appreciable errors.  

allows the  evaluation of f lu id  properties on each increment of condenser 

length. 

If t h e  pressure drop 

A method has been developed (10) which 

If the  property under consideration, f o r  instance the density, 

were plot ted versus saturation pressure, t he  resul t ing curve on a log- 

log  p lo t  (Fig. 1) muld  allow t h e  formulation of t h e  following equation: 

If t h e  denominator i s  then the condition at  tube entrance, (which is 

known) t h e  density at  the  entrance of any increment is then 

Eq. 3 

The value of P is known since the s t a t i c  condensing loss has been 

calculated for a l l  the  preceding increpaent(8). 

used t o  evaluate t h e  properties over a range of saturat ion pressures 

which is l i k e l y  t o  be encountered i n  many applications is shown i n  

Figs. 2 and 3. 

with pressure. 

That t h i s  method can be 

These figures show the small var ia t ion of t h e  exponent 

The vapor phase pressure drop is  given by t h e  Panning equation 

Eq. 4 2 
(AP)v = 2fGv AZ/DgPv 

where 

Gv = WV/A 

0.2 and, f o r  turbulent vapor f low f = 0.046/(Re)v . 
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Based on the ttsuperficialttl Reynolds number, the vapor flow was  

entirely i n  the turbulent region (Re> 2000), while t h e  l iqu id  Itsuper- 

f ic ia l t t  Reynolds number changed from viscous (Re(2000) t o  turbulent. 

The Lockhart-Martinelli parameter is then, for the  viscous liquid- 

turbulent vapor region 

and i n  t h e  turbulent liquid-turbulent vapor region 

Eq. 5 

Eq. 6 

In  order t o  evaluate X t s  and the  pressure drops, the  vapor and 

l iquid flow rates m u s t  be known. I f  the  heat flux is constant along 

the length of the  tube, a simple l inear  re la t ion can be established 

( R e f .  6 ) .  

wv = we(l - Z/L) Eq. 7 

However, i f  there is an arb i t ra ry  heat flux, the  incremental f l ux  must 

be determined. 

etc., outl ine methods for f l u x  determinations fo r  shell and tube heat 

Any of the standard heat t ransfer  t ex t s  (ll), (12), 

exchangers. 

the  amount of vapor condensed, ( the increase of t h e  l iquid flow i n  the 

Having established a value f o r  Q, an approximate value for 

increment) i s  given by 

w1 = Q/A Eq. 8 

'The "superficialtt Reynolds number is based on the flow being only 
vapor or only liquid. 
i s  less  than t h e  tube cross-sectional area, although the  sum of flow areas 
equals t ha t  of the tube. 

Actually, the  flow area available t o  e i the r  phase 
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In  condensing, t he  momentun pressure drop i s  negative, t h a t  is, it 

I 

lessens the  effect ive s t a t i c  pressure drop. 

cnange, neglecting the l iquid because of i t s  re la t ive ly  small velocity, i s  

The value o f t h e  momentum 

In the determination of the two-phase pressure drop, an i t e r a t ive  

method was used f o r  a more exact evaluation of t h e  l iquid flow rate. 

en t i r e  process was programed for solution on a digital computer. 

The 

To determine a more exact condensing rate, an energy balance on the  

increment i s  solved fo r  WL (neglecting l iquid kinetic energy and vapor 

momentum change in t h e  increment) 

%q. 10 Q = W1(A + Vy 2 /2gJ) + W C ATv + W C AT1 
v PV 1 P l  

where the  value of dT is found from an exponential relationship with 

pressure and 

Eq. 11 

AT = Te - T Eq. 12 

Thus it seems tha t  the value of ( PPIT nust be known before we can 

solve for it. The i t e r a t ive  process, hwever, goes through the pressure 

drop calculations again and again u n t i l  two consecutive values of W 

t o  within ? 0.05 percent. 

t rac ted  f romthe  pressure at condenser tube entrance and t h i s  is then the 

agree 

The value of ( AP)T found t h i s  way is then sub- 

1 

Yressure at  the  beginning o f t h e  second increment. 

The vapor velocity appears i n  the  equation f o r  momentum pressure drop 

and i n  t h e  energy balance equation. In order t o  determine Vv, t h e  f ract ion 
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of the tube f i l l e d  with vapor m u s t  be known. 

proposed t o  find t h i s  value (131, (14) but it was t h e  curve of Lockhart- 

Hart inel l i  (3) tha t  was used. 

Several methods have been 

Vv i s  then found from t h e  continuity equation. 

The determination of the Lockhar tdar t ine l l i  two-phase pressure drop 

factor "$If I t ,  was the  reverse of the preceding calculations. 

actual pressure drops and heat t ransfer  rates were known, the  flow vari-  

ables and condensing ra tes  could be calculated, gas phase and momentum 

pressure drops can be found, and the  value of fl w i l l  be given by 

Since the 
g 

g 

Xvt or Xtt was calculated and @ was plotted as a function of X and 

Reynolds number (Fig. 4). 

Loc!chart-Martinelli curve, approaching it only at low ( l e s s  than 50,000) 

Reynolds numbers. 

be t te r  agreement. 

8 
The values found i n  t h i s  manner f a l l  above the  

The values proposed by Baroczy and Sanders (6) show 

RESULTS 

Figs. 5 and 6 show the  comparison of experimental and calculated 

results for t he  two tests havingthe highest and lowest mass flow rates. 

One of these t e s t s  demonstrates the f ac t  t ha t  a loca l  rise i n  static 

pressure i s  possible because of momentum pressure regain. 

of pressure drops as predicted by t h e  Lockhart-Martinelli (4) method and 

t h e  method of t h i s  paper i s  shown i n  Fig. 7. 

A comparison 

Part of t h e  differences between experimental and predicted values can 

be attr ibuted t o  d i f f i cu l ty  i n  accessing the correct value of void fraction. 
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APPENDIX 

The calculation of t he  incremental pressure drop was done i n  t h e  

f ollouing manner: 

The i n i t i a l  estimate of l iqyid flow rate 

w 1  - a 
The vapor flow rate 

wv = we - w1 

Vapor pressure drop 

Momentum pressure drop 

( A p / W m  - -pvvvv 2 /2g 

The parameter X is  calculated (for viscous-liquid turbulent vapor) 

and a value of @ found from t h e  plot of j$ versus X. 
g g 

The two-phase f r i c t ion  drop is then 

The t o t a l  pressure drop is then 

(A P/A zIT = ( AP/A z&, + (A P/A z>* 

Now, having determined an i n i t i a l  ( OP)T for  t he  increment, the  

pressure dependent variables are found 

9 



A new value of W1 is found 

Using t h i s  value of W1 a new vapor flow is  calculated and the  vapor 

velocity i s  found 

The new values of Wv and Vv and used t o  recalculate t h e  f r i c t ion  

The process is repeated u n t i l  two con- etc. and momentum drops, 

secutive values of W1 agree t o  within 2 0.05 percent. 
xvt, 

When the above agreement i s  reached, the value of t h e  ( A  P)T is 

subtracted fromthe entrance pressure. The resu l t s  of the first increment 

are used as the entrance conditions f o r  t he  second increment. When 

correctly prograrrrmsd, a tube of twenty increments can be solved fo r  i n  

about 20 minutes on an IBM 1620. Table 1 shows numerical results f o r  one 

of the tests. 
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